Sunday, October 31, 2010

University Research into Alternative Energy




Decades of tree and biomass research jointly conducted by Florida Statue University and Shell Energy have resulted in the planting of the largest single “Energy Crop Plantation” in the entire United States. This Plantation spans approximately 130 acres and is home to over 250,000 planted trees including cottonwoods (native to the area) and eucalyptus (which are non-invasive) along with various row crops such as soybeans. This organization of “super trees” was brought into being as a result of the University's joint research with other agencies including Shell, the US Department of Energy, the Common Purpose Institute, and groups of various individuals who are working to develop alternative energy sources (those not dependent on fossil fuels) for the future. This research is focused on the planting and processing of biomass energy supplies from fast-growing crops known as “closed loop biomass” or simply “energy crops”. The project seeks to develop “power plants” such as wood-pulp or wood-fiber providing plants; clean biogas to be used by industries; plants such as surgarcane which can be used for ethanol development; and crops such as soybeans for biodiesel fuel production.





University involvement in alternative energy research is also going on at Penn State University. At Penn State, special research is focused on the development of hydrogen power as a practical alternative energy source. The researchers involved are convinced that mankind is moving toward a hydrogen-fueled economy due to the needs for us to reduce air pollution and find other sources of energy besides petroleum to power up the United States. Hydrogen energy burns clean and can be endlessly renewed, as it can be drawn from water and crop plants. Hydrogen power would thus be a sustainable energy resource to be found within the US' own infrastructure while the world's supply of (affordable) oil peaks and begins to decline. The University seeks to help with the commercial development of hydrogen powered fuel cells, which would be usable in place of or in tandem with combustion engines for all of our motor vehicles.





When President Bush recently announced his alternative energy initiative, he determined that the government would develop five “Sun Grant” centers for concentrated research. Oregon State University has the honor of having been selected as one of these centers, and has been allocated government grants of $20 million for each of the next four years in order to carry out its mission. OSU will lead the way in researching alternative energy as it represents the interests of the Pacific Islands, the US' Pacific Territories, and nine western states. OSU President Edward Ray says, the research being conducted through OSU’s Sun Grant center will contribute directly to our meeting President Bush’s challenge for energy independence. Specific research into alternative energy being conducted at OSU by varios teams of scientists right now include a project to figure out how to efficiently convert such products as straw into a source of renewable biomass fuel, and another one aimed at studying how to efficiently convert wood fibers into liquid fuel.


Saturday, October 30, 2010

Alternative Energy for the Home




The trend toward homes that are powered by alternative energy sources, ranging from wind turbines and solar collection cells to hydrogen fuel cells and biomass gases, is one that needs to continue into the 21st century and beyond. We have great need of becoming more energy independent, and not having to rely on the supplying of fossil fuels from unstable nations who are often hostile to us and our interests. But even beyond this factor, we as individuals need to get “off the grid” and also stop having to be so reliant on government-lobbying giant oil corporations who, while they are not really involved in any covert conspiracy, nevertheless have a stranglehold on people when it comes to heating their homes (and if not through oil, then heat usually supplied by grid-driven electricity, another stranglehold).





As Remi Wilkinson, Senior Analyst with Carbon Free, puts it, inevitably, the growth of distributed generation will lead to the restructuring of the retail electricity market and the generation, transmission and distribution infrastructure. The power providers may have to diversify their business to make up for revenues lost through household energy microgeneration. She is referring to the conclusions by a group of UK analysts, herself included among them, who call themselves Carbon Free. Carbon Free has been studying the ever-growing trend toward alternative energy-using homes in England and the West. This trend is being driven by ever-more government recommendation and sometimes backing of alternative energy research and development, the rising cost of oil and other fossil fuels, concern about environmental degradation, and desires to be energy independent. Carbon Free concludes that, assuming traditional energy prices remain at their current level or rise, microgeneration (meeting all of one's home's energy needs by installing alternative energy technology such as solar panels or wind turbines) will become to home energy supply what the Internet became to home communications and data gathering, and eventually this will have deep effects on the businesses of the existing energy supply companies.





Carbon Free's analyses also show that energy companies themselves have jumped in on the game and seek to leverage microgeneration to their own advantage for opening up new markets for themselves. Carbon Free cites the example of electricity companies (in the UK) reporting that they are seriously researching and developing ideas for new geothermal energy facilities, as these companies see geothermal energy production as a highly profitable wave of the future. Another conclusion of Carbon Free is that solar energy hot water heating technology is an efficient technology for reducing home water heating costs in the long run, although it is initially quite expensive to install. However, solar power is not yet cost-effective for corporations, as they require too much in the way of specialized plumbing to implement solar energy hot water heating. Lastly, Carbon Free tells us that installing wind turbines is an efficient way of reducing home electricity costs, while also being more independent. However, again this is initially a very expensive thing to have installed, and companies would do well to begin slashing their prices on these devices or they could find themselves losing market share.


Thursday, October 28, 2010

An Alternative Energy Education Method




The best method of educating young people about alternative energy production that this writer has ever witnessed is the use of the PicoTurbine Company's kits, books, and projects. The PicoTurbine Company produces these things for the purpose of advancing the cause of renewable (alternative) energy and getting young people to look into the future and see that the environment that's being seeded now is the one they will inherit then. As the late, great Gerry Ford said, “Things are more like they are now than they have ever been before.” If we are to change the future world for the better, then it starts right here and now with the advent of “green” energy systems.





One of the core concepts of PicoTurbine can be stated: Tell me, and I will forget. Show me, and I might remember some of it. Involve me, and I will master it. Based on this old tried and true adage, the kits that the company produces come with activity suggestions to get the young people into hands-on learning situations. One suggestion of the company is to demonstrate how heat can be produced by wind energy (the company's specialty) through using a “picture wire” for the heating element. PicoTurbine has found that people typically think of wind energy as being “cold” energy, and are pleasantly surprised to see how wind can be used for generating heat in the home. Another project suggestion that the company offers is to have different groups split off in the classroom and then compare their respective wind turbines that they have built. They can see which ones produce the most or least electricity; which ones start up with need of the least amount of wind power; and for very young children, which ones have the most aesthetic appeal.





There is a core curriculum that PicoTurbine has in mind for teachers to instill in their pupils. Renewable, alternative sources of energy include solar, hydroelectric, geothermal, and biomass in addition to wind-produced energy. When we use more alternative sources of energy, we decrease our nation's dependence on foreign oil supplies, which often come from nations who cannot really be called our “allies”. Alternative energy is already becoming cost effective when set against the fossil fuels that we are so reliant on currently.





PicoTurbine points out that wind farms and solar arrays are already letting their makers enjoy commercial success. In the last two decades, the cost of photovoltaic cells expressed in terms of per-watt has gone from nearly $1000 to just $4! It has been predicted by analysts that by the year 2015, the cost per watt should only be about $1 (in today's dollars). Students also need to be taught about the hidden cost of fossil fuels: pollution and environmental degradation. Air pollution from burning fossil fuels has been shown through studies to increase incidences of asthma attacks, heighten the effects of allergies, and even cause cancer. Switching over to clean, green energy found in the alternative forms would prevent air pollution and help bolster the environment.


Pursuing Alternative Forms of Energy




Record high prices at American gas pumps and continued trouble-brewing in the Middle East, Nigeria, and other areas of importance to the oil-driven economy have made it clear to Americans that we are in need of developing many new avenues of energy supply and production. In short, we need to reduce our dependency on oil, for it is ultimately finite and, frankly, the cheap sources of oil (not all oil—just the stuff that is cheap to remove from the earth) are running out. Energy consultants and analysts are insistent that cheap oil has “peaked” or is very soon going to peak. What this means for us is an expensive future—unless we can find new sources of powering our mechanized and electronic civilization, new sources which are alternatives to oil.





We must also switch to alternative forms of energy because our present forms are too damaging to the atmosphere. While this write does not believe that the global warming trend is much, if at all, sustained by the activities of mankind (in short, it's a natural cycle and there's nothing we can do about it except prepare for the effects of it), we certainly do contribute at present to the destruction of the environment and to things like air pollution with our energy sources as they are. Coal is another source of energy that we need to wean ourselves off of—again, it is finite, and it is filthy, and the mining of it is dangerous and environmentally disruptive. We can also explore new, streamlined methods for producing electricity that we presently generate so much of via hydro-power so that we are less disruptive of the environment when we have need of constructing things such as large dams.





Developing nations which have turned industrialized in recent decades especially will need the benefits of alternative energy research and development, for they are presently doing much more environmental damage than the United States. The United States, Japan, and some European nations have been implementing studies into and programs for the development of alternative energy sources, and are therefore already leading the way in doing less environmental damage. The developing nations such as China and India need to look to Japan and the West as examples of what research and development to give government backing and private investment currency to. We could also add great robustness to our own economy by being at the forefront of such alternative energy sources development and then marketing the technologies and services to nations like India, China, Brazil, and so on and so forth.





Biofuels from things like “supertrees” and soybeans, refined hydroelectric technology, natural gas, hydrogen fuel cells, the further building of atomic energy plants, the continued development of solar energy photovoltaic cells, more research into wind-harnessed power—all of these are viable energy sources that can act as alternatives to the mammoth amounts of oil and coal that we presently are so dependent on for our very lifestyles. The energy of the future is green.


Wednesday, October 27, 2010

Investments in Alternative Energy




It is possible to have a portfolio which profitably (that's the key word, is it not?) invests in alternative energy funds. “Green” energy production is expected to be a multi-billion (in today's dollars) industry by 2013.





The most recently developed wind-turbine technologies have brought us wind-produced energy which is more cost efficient as well as more widespread. More state-of-the-art wind energy technologies are typically more market competitive with conventional energy technologies. The newer wind-power technologies don't even kill birds like in days of old! Wind energy production is a growing technology, and companies engaged in it would make up an excellent part of a growth or aggressive growth portfolio.





Next to consider are solar cell, or photovoltaic cell, technologies. These are to be found implemented in pocket calculators, private property lights, US Coast Guard buoys, and other areas. More and more they find their way onto the roofs of housing and commercial buildings and building complexes. Cost is falling. Their energy efficiency (the ratio of the amount of work needed to cause their energy production versus the actual energy production) is steadily on the rise. As an example, the conversion efficiency of silicon cells has increased from a mere four percent in 1982 to over 20% for the latest technologies. Photovoltaic cells create absolute zero pollution as they are generating electrical power. However, photovoltaic cellls are not presently as cost effective as “utility produced” electricity. “PV” cells are not [capable at present for producing industrial-production amounts of electricity due to their present constraints on space. However, areas where photovoltaic cell arrays could be implemented are increasingly available. In sum, costs are going down while efficiency is rising for this alternative fuel technology.





Many alternative energy investment portfolio advisors are confident that alternative energies derived from currents, tidal movement, and temperature differentials are poised to become a new and predominant form of clean energy. The French are actually fairly advanced at hydro power generation, and numerous studies are being made in Scotland and the US along these sames lines. Some concerns center around the problems with the deterioration of metals in salt water, marine growth such as barnacles, and violent storms which have all been disruptions to energy production in the past. However, these problems for the most part seem to be cured through the use of different, better materials. Ocean-produced energy has a huge advantage because the timing of ocean currents and waves are well understood and reliable.





Investments in hydro-electric technology have grown in the last two decades. Hydro-electric power is clean; however, it's also limited by geography. While already prominent as power generation, the large, older dams have had problems with disturbing marine life. Improvements have been made on those dams in order to protect marine life, but these improvements have been expensive. Consequently, more attention is now being paid to low-impact "run-of-the-river" hydro-power plants, which do not have these ecological problems.





The reality is, the energy future is green, and investors would do well to put their money out wisely, with that advice in their minds.


Monday, October 25, 2010

Alternative Energy Development in Japan




Japan is a densely populated country, and that makes the Japanese market more difficult compared with other markets. If we utilize the possibilities of near-shore installations or even offshore installations in the future, that will give us the possibility of continued use of wind energy. If we go offshore, it's more expensive because the construction of foundations is expensive. But often the wind is stronger offshore, and that can offset the higher costs. We're getting more and more competitive with our equipment. The price—if you measure it per kilowatt-hour produced—is going lower, due to the fact that turbines are getting more efficient. So we're creating increased interest in wind energy. If you compare it to other renewable energy sources, wind is by far the most competitive today. If we're able to utilize sites close to the sea or at sea with good wind machines, then the price per kilowatt-hour is competitive against other sources of energy, go the words of Svend Sigaard, who happens to be president and CEO of the world's largest wind turbine maker, Vestas wind systems out of Denmark. Vestas is heavily involved in investments of capital into helping Japan expand its wind turbine power generating capacity. It is seeking to get offshore installations put into place in a nation that it says is ready for the fruits of investment into alternative energy research and development.





The Japanese know that they cannot become subservient to the energy supply dictates of foreign nations—World War II taught them that, as the US decimated their oil supply lines and crippled their military machine. They need to produce energy of their own, and they being an isolated island nation with few natural resources that are conducive to energy production as it is defined now are very open to foreign investment and foreign development as well as the prospect of technological innovation that can make them independent. Allowing corporations such as Vestas to get the nation running on more wind-produced energy is a step in the right direction for the Japanese people.





The production of energy through what is known as microhydoelectric power plants has also been catching on in Japan. Japan has a myriad rivers and mountain streams, and these are ideally suited places for the putting up of microhydroelectric power plants, which are defined by the New Energy and Industrial Technology Development Organization as power plants run by water which have a maximum output of 100 kilowatts or less. By comparison, “minihydroelectric” power plants can put out up to 1000 kilowatts of electrical energy.





In Japan, the small-scaled mini- and micro-hydroelectric power plants have been regarded for a considerable time as being suitable for creating electricity in mountainous regions, but they have through refinement come to be regarded as excellent for Japanese cities as well. Kawasaki City Waterworks, Japan Natural Energy Company, and Tokyo Electric Power Company have all been involved in the development of small-scale hydroelectric power plants within Japanese cities.


Sunday, October 24, 2010

Wind Power as a Viable Solution to Meeting Alternative Energy Needs




Although it is much less expensive to initially get hooked into the local electric company's grid than it is to set up and hook into wind turbines, in the long run one saves money by utilizing the wind for one's energy needs—while also becoming more independent. Not receiving an electric bill while enjoying the advantages of the modern electrically-driven lifestyle is a wondrous feeling.





Electric bills and fuel bills are rising steadily—but the cost of wind turbine energy is zero, and the cost of installing and hooking up a turbine is steadily coming down as demand rises and more commercial success is realized by various companies producing the turbines and researching technologies to make them ever more efficient. In addition, people are moving away from the traditional electric grids and the fossil fuels for personal reasons including desire for greater independence, the desire to live remotely or rurally without having to “go primitive”, political concerns such as fears of terrorist strikes on oil fields or power grids, or concerns about the environment. Again, this motivation to get away from the traditional energy sources is the same one that causes people to seek the power of the wind for their energy, giving more business opportunities to profit from wind turbine production and maintenance, which drives their costs down for the consumers. In nearly thirty states at the time of this writing, homeowners who remain on the grid but who still choose to use wind energy (or other alternative forms) are eligible for rebates or tax breaks from the state governments that end up paying for as much as 50% of their total “green” energy systems' costs. In addition, there are 35 states at the time of this writing where these homeowners are allowed to sell their excess energy back to the power company under what are called “net metering laws”. The rates that they are being paid by the local power companies for this energy are standard retail rates—in other words, the homeowners are actually profiting from their own energy production.





Some federal lawmakers are pushing to get the federal government to mandate these tax breaks and other wind power incentives in all 50 states. Japan and Germany already have national incentive programs in place. However, “A lot of this is handled regionally by state law. There wouldn't really be a role for the federal government,” the Energy Department's Craig Stevens says. And as might be imagined, there are power companies who feel that it's unfair that they should have to pay retail rates to private individuals. “We should [only have to] pay you the wholesale rate for ... your electricity,” according to Bruce Bowen, Pacific Gas & Electric's director of regulatory policy. However, the companies seem to be more worried about losing short term profits than about the benefits, especially in the long run, of the increased use of wind turbines or wind farms. Head of the Center for Energy Efficiency and Renewable Technologies of California V. John White points out, “It's quality power that strengthens the grid.”